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ABSTRACT

The paleogeographic evolution of the western U.S. Great Basin from the Late 
Cretaceous to the Cenozoic is critical to understanding how the North American 
Cordillera at this latitude transitioned from Mesozoic shortening to Cenozoic exten-
sion. According to a widely applied model, Cenozoic extension was driven by collapse 
of elevated crust supported by crustal thicknesses that were potentially double the 
present ~30–35 km. This model is difficult to reconcile with more recent estimates of 
moderate regional extension (≤50%) and the discovery that most high-angle, Basin 
and Range faults slipped rapidly ca. 17 Ma, tens of millions of years after crustal 
thickening occurred. Here, we integrated new and existing geochronology and geo-
logic mapping in the Elko area of northeast Nevada, one of the few places in the 
Great Basin with substantial exposures of Paleogene strata. We improved the age 
control for strata that have been targeted for studies of regional paleoelevation and 
paleoclimate across this critical time span. In addition, a regional compilation of the 
ages of material within a network of middle Cenozoic paleodrainages that developed 
across the Great Basin shows that the age of basal paleovalley fill decreases south-
ward roughly synchronous with voluminous ignimbrite flareup volcanism that swept 
south across the region ca. 45–20 Ma. Integrating these data sets with the regional 
record of faulting, sedimentation, erosion, and magmatism, we suggest that volca-
nism was accompanied by an elevation increase that disrupted drainage systems and 
shifted the continental divide east into central Nevada from its Late Cretaceous loca-
tion along the Sierra Nevada arc. The north-south Eocene–Oligocene drainage divide 
defined by mapping of paleovalleys may thus have evolved as a dynamic feature that 
propagated southward with magmatism. Despite some local faulting, the northern 
Great Basin became a vast, elevated volcanic tableland that persisted until dissection 
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INTRODUCTION

The switch from Mesozoic shortening to Cenozoic exten-
sion in the western part of the North American Cordillera was 
a fundamental tectonic transition with implications for orogenic 
systems worldwide, but its causes remain hotly debated and 
poorly understood. The many models focusing on this time inter-
val reveal disagreements regarding these basic questions: What 
were the pre-extensional crustal structure, crustal thickness, and 
resulting topography across the western United States? What was 
the causal mechanism for initiation of continental extension? 
What was the detailed timing of important tectonic events across 
this time span, and how do those events factor into our under-
standing of the causal mechanisms for the switch from shorten-
ing to extension?

The prevailing view argues that Mesozoic crustal thickening 
in the Sevier fold-and-thrust belt produced a high plateau (the 
“Nevadaplano”) across the region of the present-day Great Basin 
(Fig. 1; DeCelles, 2004). Although the concept of the Nevada-
plano is widely accepted, there is little agreement regarding the 
timing and cause of plateau uplift (cf. Parsons et al., 1994; Mix et 
al., 2011; Cassel et al., 2018), its peak elevation (cf. Chase et al., 
1998; Wolfe et al., 1998; Best et al., 2009; Cassel et al., 2012), 
whether or not “rugged topography” may have been present on 
the plateau (cf. Chamberlain et al., 2007; Henry et al., 2012; 
Bahadori et al., 2018), and the causes and timing of its inferred 
“collapse” (cf. Sonder et al., 1987; McQuarrie and Chase, 2000; 
Colgan and Henry, 2009; Wells et al., 2012; Lee et al., 2017).

Related to these broader questions, there are more detailed 
questions about the resulting topography across this region. Stud-
ies based on the pattern of Cenozoic ash-flow tuffs that filled 
paleovalleys (e.g., Best et al., 2013; Henry and John, 2013) indi-
cate an approximately north-south–oriented divide that passed 
down the middle of central Nevada (Fig. 2), slightly west of the 
mostly older, Eocene Elko Basin (e.g., Haynes, 2003; Lund Snee 
et al., 2016; Camilleri et al., 2017) and the mostly Late Creta-
ceous and Eocene Sheep Pass Basin (e.g., Druschke et al., 2009a, 
2009b). However, the divide has also been inferred to lie along 
the axis of the Mesozoic Sierra Nevada arc during the Late Creta-
ceous (Van Buer et al., 2009; Sharman et al., 2015). When, why, 
and how did this eastward shift of the divide occur? Was the shift 

by Basin and Range faulting that began ca. 21–17 Ma. Based on this more detailed 
geologic framework, it is unlikely that Basin and Range extension was driven by Cre-
taceous crustal overthickening; rather, preexisting crustal structure was just one of 
several factors that that led to Basin and Range faulting after ca. 17 Ma—in addition 
to thermal weakening of the crust associated with Cenozoic magmatism, thermally 
supported elevation, and changing boundary conditions. Because these causal factors 
evolved long after crustal thickening ended, during final removal and fragmentation 
of the shallowly subducting Farallon slab, they are compatible with normal-thickness 
(~45–50 km) crust beneath the Great Basin prior to extension and do not require 
development of a strongly elevated, Altiplano-like region during Mesozoic shortening.

related to the south-sweeping middle Cenozoic volcanism of the 
ignimbrite flareup in the retroarc region (Fig. 2; e.g., Armstrong 
and Ward, 1991; Christiansen and Yeats, 1992)? How did volca-
nism and the addition of large volumes of magma and heat affect 
retroarc topography?

Here, we integrated new and previously published geologic 
mapping and U-Pb detrital zircon geochronology from Late Cre-
taceous(?)–Neogene sedimentary and volcanic rocks of the Elko 
Basin of northeast Nevada, one of the only successions spanning 
large portions of the time between Cretaceous crustal thicken-
ing and Neogene Basin and Range extension (Figs. 1 and 2). 
We discuss the paleogeographic and tectonic significance of the 
stratigraphic succession and published stable isotope records in 
the Elko area in the context of others from throughout the region. 
We also compiled ages for the oldest volcanic or sedimentary 
material deposited in a network of east- and west-draining paleo-
valleys active across the Great Basin in middle Cenozoic time. 
Drawing upon all of this information, we present a revised view 
of the paleogeographic and tectonic evolution of the northern 
Great Basin from Late Cretaceous to Neogene time. Finally, we 
discuss the implications for estimates of crustal thickness and 
topography prior to Cenozoic extension, including impacts for 
the Nevadaplano model.

GEOLOGIC SETTING

Late Cretaceous and Cenozoic strata in northeast Nevada, 
in the area of the Eocene Elko Basin (Figs. 1–3), unconform-
ably overlie a thick (~10 km) Neoproterozoic to Triassic section 
deposited along the passive margin of western North America 
(e.g., Willden and Kistler, 1979; Colgan et al., 2010), which 
formed after Neoproterozoic and early Paleozoic rifting of the 
Rodinia supercontinent (e.g., Lund, 2008; Yonkee et al., 2014). 
West of the Elko area, there lie deep-marine rocks of the Roberts 
Mountains and Golconda allochthons (Fig. 1) that were thrust 
across the continental margin in the earliest Mississippian and 
the Permian–Triassic, respectively (e.g., Stewart, 1980). These 
relations and the location of the initial 87Sr/86Sr = 0.706 iso-
pleth imply that western Nevada was underlain by oceanic crust 
and that the thick passive-margin succession at the study area 
in northeast Nevada was underlain by thinned continental crust 
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(Tosdal et al., 2000). East-dipping subduction beneath the Cordil-
leran margin initiated as early as the Early Triassic (e.g., Saleeby 
et al., 2008). The study area, which was in the retroarc region of 
the Sierra Nevada arc, experienced two episodes of shortening 
and metamorphism during periods of increased arc magmatism, 
one in the Middle to Late Jurassic ca. 170–155 Ma and the sec-
ond in the Late Cretaceous ca. 120–70 Ma (e.g., Dallmeyer et al., 
1986; Miller and Gans, 1989; Thorman et al., 1991; Smith et al., 
1993; McGrew and Snee, 1994; Thorman and Peterson, 2003; du 
Bray, 2007; Zuza et al., 2020). Cretaceous thrust faulting at the 
latitudes of northern and central Nevada was confined mostly to 

the Sevier fold-and-thrust belt to the east of the study area, with 
significantly less shortening represented by the Central Nevada 
thrust belt in central and southern Nevada (Fig. 1; Taylor et al., 
2000; Di Fiori et al., 2020).

Following Late Cretaceous subduction-related arc magma-
tism, volcanism initiated again as part of the middle Cenozoic 
ignimbrite flareup, characterized by widespread caldera-forming 
volcanism that migrated southward across the Great Basin, pass-
ing through northeast Nevada (Fig. 2) ca. 42–36 Ma (Brooks et al., 
1995; Ressel and Henry, 2006; Ryskamp et al., 2008; Henry and 
John, 2013; Lund Snee et al., 2016). Although extension  initiated 
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Figure 1. The Great Basin, including the northern and central Basin 
and Range Province, western United States. The Mesozoic Sierra 
Nevada batholith is after Van Buer and Miller (2010). Paleogene ba-
sins are from Haynes (2003) and Smith et al. (2017). The approxi-
mate late Paleocene ocean shoreline is after Reid (1988) and Lechler 
and Niemi (2011). Luning-Fencemaker thrust belt (LFTB) locations 
are from Best et al. (2009). Locations of the Golconda and Roberts 
Mountains allochthons, Central Nevada thrust belt, and Sevier belt 
are from DeCelles (2004). The Basin and Range Province boundary 
is from Dickinson (2013). ARG—Albion–Raft River–Grouse Creek 
Mountains; CB—Copper Basin; CNTB—Central Nevada thrust belt; 
EB—Elko Basin; EH—East Humboldt Range; FM—Funeral Moun-
tains; I—Inyo Mountains; P—Pequop Mountains; R—Ruby Moun-
tains; RV— Railroad Valley; S—Snake Range; SPB—Sheep Pass Ba-
sin; W—White Mountains; WH—Wood Hills; WSB—White Sage Ba-
sin. States: OR—Oregon; CA—California; NV—Nevada; ID—Idaho; 
WY—Wyoming; UT—Utah; AZ—Arizona. 
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Figure 2. Late Cretaceous (Late-K) and 
Cenozoic volcanism and topography in 
the Great Basin, showing paleodrainages 
colored by the age of oldest reported mate-
rial deposited within them, compiled from 
sources in the Supplemental Material (see 
text footnote 1). Lighter blues represent 
younger paleodrainages, and gray indi-
cates no age information. The approximate 
location of the Late Cretaceous paleo - 
divide is inferred from Van Buer et al. 
(2009) and Sharman et al. (2015). The Ce-
nozoic paleodivide is from Henry and John 
(2013) and represents the conventional 
view that the drainage divide was broadly 
static over Eocene–Oligocene time (and 
possibly earlier). Volcanic fields are based 
on data from the North American Volcanic 
and Intrusive Rock Database (NAVDAT; 
http://ecp.iedadata.org). Other references 
and acronyms are as in Figure 1.
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locally as early as Eocene time in certain areas (e.g., Henry et 
al., 2011; Miller et al., 2012; Wells et al., 2012), recognition is 
growing that the primary extension that affected topography and 
supracrustal rocks across the hinterland was an episode of rapid 
slip on high-angle normal faults that took place mostly during 
middle to late Miocene time and culminated in the present Basin 
and Range topography (Lund et al., 1993; Miller et al., 1999; 
Stockli et al., 2002; Henry, 2008; Colgan and Henry, 2009; Col-
gan et al., 2010; Colgan, 2013; Konstantinou and Miller, 2015; 
Lund Snee et al., 2016). This contribution presents new geochro-
nologic and geological data obtained in the ancestral Elko Basin. 
We then examined the sedimentary record for the constraints it 
provides on the controversial and enigmatic history during the 

Late Cretaceous to the Miocene and, specifically, how the surface 
topography may have changed across this time span.

METHODS

We mapped geologic units and tuffaceous beds (Fig. 4), 
measured stratigraphic sections (Fig. 5), and collected samples 
for U-Pb detrital zircon geochronology in Oligocene and Mio-
cene successions in Huntington Valley and the eastern Carlin-
Piñon Range, northeast Nevada (Fig. 3), in and near the ancestral 
Elko Basin (Figs. 1 and 2). Our work refines geologic mapping 
by Smith and Howard (1977), Smith and Ketner (1978), Lund 
Snee (2013), Lund Snee and Miller (2015), and Lund Snee et 
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Figure 5. Isotopic analyses from Mulch et al. (2015) and sources therein plotted by stratigraphic section. Section and sample 
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for nearly absolute depositional ages from interbedded tuffaceous horizons. Plotted stable isotope measurements and age data 
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These plots complement those in Figure 6, where isotopic measurements are plotted together by depositional age bounds. 

Downloaded from http://pubs.geoscienceworld.org/gsa/books/book/2332/chapter-pdf/5533272/spe555-13.pdf
by Stanford University user
on 15 February 2022



 Magmatism, migrating topography, and the transition from Sevier shortening to Basin and Range extension 7

al. (2016), who provided detailed descriptions of those rocks. 
The GSA Supplemental Material1 contains detailed analyti-
cal methods, and it presents the results of seven U-Pb detrital 
zircon analyses in addition to those presented by Lund Snee et 
al. (2016). Figure 5 shows the new and previous geochronology 
results within their stratigraphic framework.

Some of the same sections have previously been sampled 
for stable isotope analysis of calcite cements, limestone, and 
paleosols (Horton et al., 2004; Mix et al., 2011), and our work 
refines the age constraints and understanding of the deposi-
tional context for Neogene rocks within those sections. Figure 
6 shows stable isotope data from prior studies placed in their 
revised temporal positions, with permissible depositional ages 
conservatively bounded by the full 2σ uncertainty ranges for the 
depositional age constraints (e.g., including the 2σ uncertainties 
for weighted mean ages). The additional supplemental mate-
rial in EarthChem (https://doi.org/10.26022/IEDA/112062) 
includes tables containing lithologic details, sample localities, 
(maximum) depositional age information, and analytical data. 
Using these same methods, we used published geochronologic 
data to improve depositional age constraints for published sta-
ble isotope data that were obtained in older, Paleogene strata 
in the area (locations in Fig. 3), for which a number of contra-
dictory depositional ages have been reported (cf. Horton et al., 
2004; Mix et al., 2011; Chamberlain et al., 2012; Mulch et al., 
2015; Smith et al., 2017; Ibarra et al., 2021). In most cases, the 
permissible age bounds were not given in those studies, and 
sample ages were reported as being absolute when in fact they 
were maximum depositional ages (MDAs).

REVIEW OF THE SEDIMENTARY AND  
VOLCANIC RECORD

Elko Area of Northeast Nevada

The Elko area is one of the only places in the Great Basin 
where well-preserved sedimentary and volcanic rocks spanning 
the Late Cretaceous(?) to Neogene are exposed over appreciable 
areas (e.g., Stewart, 1980). Because the term “Elko Basin,” sensu 
stricto, refers to the part of northeast Nevada where the Elko For-
mation was deposited in Eocene time (see Camilleri et al., 2017), 
we use the term “ancestral Elko Basin” to refer to this general 
area over a wider time span.

As shown in Figure 6, little deposition is documented 
between the Cretaceous and early Eocene in the ancestral Elko 
Basin region (Smith and Ketner, 1976; Fouch et al., 1979; Rahl 

et al., 2002; Haynes, 2003; Crafford, 2007; Henry et al., 2011; 
Lund Snee and Miller, 2015), reflecting the history of gradual 
erosion that prevailed throughout much of the hinterland from the 
peak of Late Cretaceous deformation and magmatism until the 
middle Eocene (e.g., Van Buer et al., 2009; Konstantinou et al., 
2012). The first strata deposited during this time span within the 
Elko area were Late Cretaceous(?) to early Eocene(?) red beds 
and limestones (Figs. 3, 4C, 5, and 6), probably in isolated topo-
graphic lows, fault-bounded basins, or the bottoms of paleoval-
leys (Armstrong, 1968, 1972; Smith and Ketner, 1976; Gans and 
Miller, 1983; Van Buer et al., 2009; Konstantinou et al., 2012; 
Long, 2012; Lund Snee, 2013; Henry, 2018). These early depos-
its, as well as the overlying Elko Formation (Fig. 5), contain clast 
compositions and detrital zircon age distributions that reflect 
recycling from strata presently exposed beneath the Cenozoic 
unconformity (Druschke et al., 2011; Ruksznis, 2015; Lund Snee 
et al., 2016; Canada et al., 2020).

The more extensive middle to late Eocene Elko Formation 
(Figs. 5 and 6), which locally reaches thicknesses of ~850 m 
(Henry, 2008), consists of a broadly upward-fining succession of 
conglomerate, sandstone, siltstone, shale, clay, marl, and lime-
stone (Smith and Ketner, 1976; Solomon et al., 1979; Moore et 
al., 1983; Server and Solomon, 1983; Ketner and Alpha, 1992; 
Haynes, 2003; Lund Snee and Miller, 2015; Smith et al., 2017). 
The presence of Cenozoic tuffaceous material and other volca-
nic detritus is a key factor that distinguishes the Elko Forma-
tion from older units (Smith and Ketner, 1976; Lund Snee et 
al., 2016). Deposition of the Elko Formation began ca. 46.1 Ma 
(Fig. 5), based on a U-Pb zircon age of an ash-fall tuff depos-
ited near its base (Haynes, 2003). The end of Elko Formation 
deposition is tightly constrained at ca. 38.4 Ma, based on a U-Pb 
detrital zircon MDA of 37.9 ± 0.5 Ma from its upper strati-
graphic levels within the eastern Carlin-Piñon Range, south of 
Robinson Mountain (Fig. 3; sample ELKO-2 of Lund Snee et 
al., 2016) and a minimum depositional age of 38.47 ± 0.15 Ma 
from 40Ar/39Ar plagioclase analysis on an overlying ash-flow 
tuff nearby (sample H10–45 of Henry et al., 2015) (see Fig. 5). 
These dates revise an estimate of 40.4 Ma for the end of Elko 
Formation deposition by Smith et al. (2017), and they are com-
patible with estimates of ca. 39–38 Ma by Haynes (2003) and 
Mulch et al. (2015). The initiation of shallow basin development 
recorded by the onset of Elko Formation deposition ca. 46–44 
Ma, shortly before arrival of volcanism (see below), indicates 
that volcanism occurring to the north in southern Idaho may 
have been responsible for a change in topography and regional 
stress state. The development of accommodation for deposition 
at this time, following tens of millions of years with little or 
no sedimentation, suggests initiation of a mechanism such as 
normal faulting, development of sags or uplifts, and/or establish-
ment of broad paleodrainages (e.g., Howard, 2003; Smith et al., 
2017; Henry, 2018; this study). Lithofacies characterization and 
δ13C

carbonate
, δ18O

carbonate
, and δD

glass
 measurements suggest that the 

Elko Basin experienced a profound transition in depositional set-
ting between deposition of the lower and upper Elko Formation  

1Supplemental Material. Appendices, figures, and supplementary tables to 
support the text. The material includes methodological descriptions, as well 
as detailed descriptions of the stratigraphic successions and their age control, 
sample localities, and analytical data. Please visit https://doi.org/10.1130/
SPE.S.16878799 to access the supplemental material, and contact editing@ 
geosociety.org with any questions.
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ca. 40 Ma, as volcanism became more proximal (Fig. 2), although 
published interpretations are contradictory. Mulch et al. (2015) 
suggested that elevations increased and lake waters freshened 
within the Elko Basin around this time, whereas Smith et al. 
(2017) proposed an upward transition from freshwater fluvial-
lacustrine to saline and anoxic profundal settings, with substan-
tial uplift only after the end of Elko Formation deposition.

The ca. 38.5–36.8 Ma Robinson Mountain volcanic field 
(Ressel and Henry, 2006; Henry et al., 2015; Lund Snee et al., 
2016) is a thick succession (>1 km) of rocks associated with 
the ignimbrite flareup on the eastern flanks of the Carlin-Piñon 
Range (Fig. 3), and it conformably overlies the Elko Forma-
tion (Smith and Ketner, 1976, 1978; Ressel and Henry, 2006; 
Ryskamp et al., 2008; Lund Snee and Miller, 2015). Following 
volcanism, sedimentation and faulting effectively ceased in this 
area (Fig. 6), with few exceptions, until Basin and Range faulting 
began in the middle Miocene (Henry et al., 2011; Lund Snee et 
al., 2016; this study). Any faulting that accompanied magmatism 
and crustal flow at depth might have been limited to the imme-
diate areas above the metamorphic core complexes, where the 
surface record is incomplete due to younger faulting and ero-
sion (Miller et al., 1999; Colgan et al., 2010; Konstantinou et al., 
2013a; Lee et al., 2017). Lund Snee et al. (2016) documented 
10°–15° tilting events following volcanism, between ca. 36.8 and 
33.9 Ma and between ca. 31.1 and 24.4 Ma (better constrained 
by this study to between ca. 31.1 and 25.1 Ma as shown in Figs. 
4B, 5, and 6), which they interpreted to represent local deforma-
tion associated with deeper crustal flow leading to surface adjust-

ments by either faulting and/or doming adjacent to the develop-
ing Ruby Mountains–East Humboldt Range metamorphic core 
complex. Best and Christiansen (1991) made a similar interpreta-
tion for the limited and localized faulting that occurred during the  
~10 m.y. following volcanism throughout the Great Basin. 

An early phase of gradual extension within this generally 
quiescent interval may be represented by deposition of ca. 25 Ma 
and progressively younger fluvial-lacustrine material near the 
base of the Humboldt Formation (Figs. 3, 4A, and 6; Lund Snee 
et al., 2016; this study), as well as the possibly correlative late 
Oligocene and/or early Miocene sedimentary sequence of Clover 
Creek (McGrew and Snoke, 2015) near the East Humboldt Range 
(Fig. 1). Subsequently, rapid slip initiated on basin- bounding 
faults at 17–16 Ma (e.g., Colgan et al., 2010), represented in 
northeast Nevada by thick middle to late Miocene deposits of the 
Humboldt Formation. Near the Ruby Mountains–East Humboldt 
Range (Figs. 3, 4B–4D, and 5), the Humboldt Formation locally 
exceeds 4 km thickness (Satarugsa and Johnson, 2000), by far 
dwarfing the thicknesses of older Cenozoic units.

Great Basin Region

Here, we expand the above discussion to include rocks of 
Late Cretaceous to Neogene age deposited elsewhere in the 
Great Basin, primarily in the Copper, White Sage, and Sheep 
Pass Basins (Fig. 1). As can be seen in Figure 6, the histories of 
deposition and tectonism in these areas are broadly similar, char-
acterized by limited and localized Late Cretaceous to Paleogene 
sedimentation and faulting (e.g., Gans and Miller, 1983; Best and 
Christiansen, 1991; Burchfiel et al., 1992; Van Buer et al., 2009; 
Henry et al., 2011; Konstantinou et al., 2012; Long, 2012; Henry 
and John, 2013) followed by volcanism, a subsequent hiatus in 
sedimentation, and then rapid sedimentation and tilting in the 
middle Miocene.

Regionally, the most significant deposition in the Late Cre-
taceous to Paleogene interval was in the greater Sheep Pass 
Basin of east-central Nevada (Fig. 1), where deposition of up to  
~1200 m of Late Cretaceous–middle Eocene Sheep Pass Forma-
tion and late Eocene Stinking Spring Conglomerate (Fig. 6) was 
associated with potentially 4 km of normal slip on the northwest-
dipping Ninemile fault system (Druschke et al., 2009a, 2009b). 
Sedimentation and tilting occurred elsewhere in east-central 
Nevada (Gans et al., 1989), including near the Snake Range 
metamorphic core complex (Figs. 1 and 6), but deposition was 
localized (Best and Christiansen, 1991).

As in the case of the Elko area described above, the limited 
pre-Miocene deposition that did take place elsewhere in the Great 
Basin occurred several millions of years before ignimbrite flareup 
volcanism (Fig. 6), suggesting that early magmatic processes 
could have prompted changes in topography. In the Copper Basin 
of northeast Nevada (Fig. 1), localized late Eocene–Oligocene 
deposition may have occurred due to basin development asso-
ciated with normal fault slip shortly before and during nearby 
volcanism (Axelrod, 1966; Rahl et al., 2002). Alternatively, these 

Figure 6. Regional Cenozoic tectonic events and measured isotopic 
values in the Elko area, northeast Nevada. Stable isotope data are 
from Mulch et al. (2015, and sources therein). Vertical bars indicate 
the full permissible age range for each analysis, conservatively in-
cluding the 2σ uncertainties of the bounding age constraints. Values 
of δ18O are reported relative to standard mean ocean water (SMOW), 
and values of δ13C are reported relative to Peedee belemnite (PDB) 
for consistency with prior studies in this region. Pl—Pliocene; Q—
Quaternary; Cong.—conglomerate; EECO—Early Eocene climatic 
optimum; Fm.—Formation; MECO—Middle Eocene climatic opti-
mum; REH/RMEH—Ruby Mountains–East Humboldt Range. Refer-
ences: 1—Colgan and Henry (2009); 2—Coble and Mahood (2012); 
3— Armstrong and Ward (1991); 4—Atwater (1989); 5—Haynes 
(2003); 6—Lund Snee et al. (2016); 7—Brooks et al. (1995); 8—
Druschke et al. (2009a, 2009b); 9—Howard et al. (2011); 10—Henry 
et al. (2011); 11—McGrew and Snee (1994); 12—Rahl et al. (2002) 
and McGrew et al. (2007); 13—Mulch et al. (2015); 14—McGrew 
et al. (2000); 15—Smith and Ketner (1976); 16—Potter et al. (1995) 
and Dubiel et al. (1996); 17—Henry (2008); 18—Stockli (2005); 
19—Satarugsa and Johnson (2000); 20—Colgan et al. (2010); 21—
Haines and van der Pluijm (2010); 22—Wright and Snoke (1993); 
23— MacCready et al. (1997); 24— Ryskamp et al. (2008); 25— Horton 
and Schmitt (1998); 26—Gans et al. (1989); 27—McGrew and Snoke 
(2015); 28—DeCelles and Coogan (2006); 29—Miller et al. (1999); 
30—Ruksznis (2015); 31—Zachos et al. (2001); 32—Sluijs et al. 
(2013); 33— Cooper et al. (2010); 34—Liu and Stegman (2012); 35—
Van Buer et al. (2009); 36—Lechler and Niemi (2011); 37—this study. 
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units (and the nearby Elko Formation) may have been deposited 
into paleochannels, some of which could have been partially 
dammed by faulting (Henry, 2008, 2018). In the White Sage 
Basin of western Utah, ~150 m of early Eocene deposits experi-
enced modest tilting in the middle Eocene before being blanketed 
ca. 40–39 Ma by ignimbrite flareup volcanic rocks (Potter et al., 
1995; Dubiel et al., 1996). These data sets appear to preclude 
significant activity and offset along Late Cretaceous to Oligocene 
faults, consistent with prior compilations for the Great Basin 
(Best and Christiansen, 1991; Colgan and Henry, 2009; Henry et 
al., 2011; Henry and John, 2013).

In most places, sedimentation effectively ceased following 
volcanism, lasting at least through most of the Oligocene. Similar 
to the Ruby Mountains–East Humboldt Range metamorphic core 
complex, gradual sedimentation near the Snake Range metamor-
phic core complex reinitiated as early as the late Oligocene or 
earliest Miocene (Miller et al., 1999; Ruksznis, 2015). Neverthe-
less, by far the most significant episode of sedimentation, tilting, 
and uplift in the Great Basin occurred during middle Miocene 
time, ca. 17–16 Ma, resulting in region-wide development of 
deep (often >2 km) half-graben basins that filled rapidly with 
sediments (Noble, 1972; Stockli et al., 2002; Colgan, 2013).

REVIEW OF STABLE ISOTOPE MEASUREMENTS

Numerous studies have targeted strata in the ancestral Elko 
Basin for stable isotope analysis in efforts to understand regional 
paleoelevation and paleoclimate histories (Fig. 3). Stable iso-
tope measurements from Elko area carbonates have served as 
key constraints in regional studies arguing that large and rapid 
negative shifts in δ18O, which proceeded southward across the 
western United States approximately synchronous with migrat-
ing middle Cenozoic volcanism, indicate simultaneous south-
migrating topographic uplift (Horton et al., 2004; Davis et al., 
2009b; Mix et al., 2011; Chamberlain et al., 2012), supporting 
a model initially proposed by Gans (1990). Specifically, these 
conclusions were based on a proposed ~7‰–10‰ decrease in 
δ18O values at ca. 50–47 Ma in southwestern Montana and east-
ern Idaho (Kent-Corson et al., 2006), followed by a decrease 
of up to ~15‰ in the Elko Basin, proposed to have occurred 
between ca. 40.2 and 39.4 Ma (Mulch et al., 2015), and finally 
an ~4‰ decrease after ca. 23 Ma in southern Nevada (Cham-
berlain et al., 2012). This timing is generally corroborated by 
comparable negative shifts of δ18O values ca. 44–40 Ma in fore-
land basin deposits east of the Sevier fold-and-thrust belt at the 
latitude of northeast Nevada (Fig. 1), which have been attrib-
uted to high-elevation catchment areas in the Sevier hinterland 
(e.g., Carroll et al., 2008; Davis et al., 2009a). In the ancestral 
Elko Basin, the decrease in δ18O values was interpreted to sug-
gest 2.5 km of uplift occurring over <2 m.y. (Chamberlain et 
al., 2012). Mulch et al. (2015) subsequently suggested that a 
component of the up to 15‰ decrease in δ18O values in the Elko 
Basin should be attributed to climatic and diagenetic factors, 
including late Eocene global cooling.

More recently, however, the sedimentary age constraints, 
mean δ18O values, and interpretations of depositional environ-
ment underpinning some of these studies have changed, both for 
the ancestral Elko Basin (Lund Snee et al., 2016; Smith et al., 
2017) and the Sage Creek Basin of southwest Montana (Kent-
Corson et al., 2010; Schwartz et al., 2019). In southwest Mon-
tana, Kent-Corson et al. (2010) revised the magnitude of the neg-
ative shift in δ18O values from 7‰ to only 4‰–5‰ (where all 
δ18O values are relative to standard mean ocean water [SMOW]). 
The 4‰–5‰ shift was corroborated by Schwartz et al. (2019), 
who also established that it occurred rapidly at ca. 47 Ma, across 
a conformable stratigraphic boundary. The ~1 m.y. time interval 
for this shift in δ18O values may be too rapid to be explained by 
topographic changes associated with Challis and Absaroka vol-
canism, which reached southwest Montana ~5 m.y. earlier. 

In the Elko area, Lund Snee et al. (2016) found that the 
rocks previously mapped as part of the Oligocene Indian Well 
Formation (Fig. 3) are mostly middle Miocene and younger 
in age and hence part of the Humboldt Formation. As a result, 
that study recommended abandoning the Indian Well Formation 
name. Because much of the marked decrease in δ18O values (an 
interpreted ~14‰–15‰ decrease from ~+29.1‰ to +14.4‰) 
occurred across this angular unconformity, the age revisions 
imply that the timing of the shift could have occurred anytime 
within a large window of time between 40 and 15.5 Ma. Our 
new geochronologic data and more conservative approach to 
constraining temporal bounds (Fig. 6) do not significantly nar-
row the time interval over which the δ18O shift occurred, but they 
do constrain the ages more rigorously and in greater detail than 
prior studies (e.g., Mix et al., 2011; Mulch et al., 2015; Lund 
Snee et al., 2016; Smith et al., 2017; Ibarra et al., 2021). The 
record of δ18O values with improved age constraints shown in 
Figure 6 indicates considerable scatter in δ18O values both in the 
upper part of the Eocene Elko Formation and in lower levels of 
the Humboldt Formation for which stable isotope values have 
been measured. This scatter leads us to interpret a slightly differ-
ent shift of ~–12‰, from ~+25‰ (but ranging between ~+14‰ 
and +30‰) in upper Elko Formation strata with preferred ages 
spanning ca. 40.9–38.6 Ma to ~+13‰ (ranging between ~+9‰ 
and +20‰) in strata within the lower Humboldt Formation with 
preferred ages spanning ca. 15.8–15.5 Ma. Although prior work-
ers (e.g., Mulch et al., 2015) argued that the decrease in δ18O 
values occurred within the upper Elko Formation because of an 
~14‰–15‰ decrease that is observed within that succession, 
we point out that this interpretation was made on the basis of 
three nonsequential data points and that δ18O values increase 
again by ~10‰ (from +14.4‰–+17.6‰ to +24.9‰–+26.1‰) 
immediately above and still within the Elko Formation (Fig. 6). 
Such rapid oscillation of δ18O values within a narrow part of the 
succession is unlikely to reflect changes in topography. Hence, 
we conclude that the ~12‰ (or possibly less) decrease in δ18O 
values observed in the Elko Basin occurred at an unknown rate 
sometime between ca. 38.6 and 15.8 Ma. Moreover, our new age 
constraints and stratigraphic thickness measurements show that  
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>400 m of stratigraphic section are present below the lowest mea-
sured Humboldt Formation δ18O values, with a depositional age 
of 25.1 ± 0.2 Ma now established for a tuffaceous bed near the 
base of that unit (Figs. 4 and 5). A consequence of the improved 
age constraints is that we do not know when the decrease in Elko 
Basin δ18O values occurred relative to the onset of volcanism 
(Figs. 2 and 3) ca. 39–38 Ma (Ressel and Henry, 2006; Henry 
et al., 2015; Lund Snee et al., 2016). The sign and magnitude of 
the decrease in δ18O values are clearly consistent with an eleva-
tion increase, although not definitive, because of the potential for 
climatic and diagenetic influences over this interval.

Stable isotopic studies focusing instead on volcanic rocks 
that erupted across the Great Basin (including the Elko region) 
and westward to the Sierra Nevada flank have argued that a high 
plateau persisted across the former Sevier hinterland between 41 
and 23 Ma; this argument is based on relatively low δD values in 
altered volcanic glass samples that span this age spectrum (Cas-
sel et al., 2009, 2014, 2018). These results were interpreted to 
suggest that the inferred high plateau developed in Cretaceous 
time (Henry et al., 2012). However, the δD values vary with sam-
ple age and location. This led Cassel et al. (2018) to propose that 
elevations across the hinterland were ~2.25–3.0 km during late 
Eocene time and then fell by ~0.5–1 km by early Oligocene time, 
followed by ~1.5 km of uplift between the early and late Oligo-
cene (to as high as 3.5 km in central Nevada), before eventually 
falling to present-day mean elevations around 1.75 km. Although 
the presence of an elevated plateau following the arrival of vol-
canism is consistent with the other geologic and stable isotopic 
evidence discussed here, these proposed oscillatory elevation 
changes are difficult to reconcile with geologic evidence as they 
imply multiple episodes of faulting and sedimentation that are 
not corroborated by the geologic record (see above and summa-
ries by Best and Christiansen, 1991; Henry et al., 2011; Henry 
and John, 2013). Moreover, the age brackets of δ18O values from 
Elko Basin carbonates (Fig. 6; Horton et al., 2004; Mix et al., 
2011; Chamberlain et al., 2012; Mulch et al., 2015) are not con-
sistent with models that require elevations to have decreased 
between ca. 42 and 13 Ma (e.g., Coney and Harms, 1984; Sonder 
et al., 1987; Bahadori et al., 2018; Cassel et al., 2018), because 
δ18O and δ13C values were generally low from ca. 16 Ma onward, 
and prior to ca. 42 Ma, they were substantially higher (Fig. 6).

In summary, recent work to improve age constraints and 
better define depositional settings in both northeast Nevada and 
southwest Montana (Kent-Corson et al., 2010; Lund Snee et al., 
2016; Schwartz et al., 2019; this study) indicates that the stable 
isotope record does not alone provide clear evidence for south-
migrating topography across the region. On the basis of more 
rigorous age constraints, the negative shift in δ18O values within 
the ancestral Elko Basin cannot be decisively linked to the age of 
south-migrating volcanism, although it is consistent with uplift 
occurring at that time or later and is inconsistent with models 
requiring a decrease in elevation anytime between ca. 42 and  
13 Ma (Fig. 6). Far stronger evidence for south-migrating topog-
raphy is demonstrated by the other data sets discussed here: the 

record of sedimentation, faulting, erosion, and reorganization of 
drainage networks. Stable isotope studies based on δD values 
in altered volcanic glass present a more complex pattern with 
space and time. Published interpretations of those results cannot 
presently be reconciled with the existing record of sedimenta-
tion and faulting.

REEVALUATING THE EVOLUTION OF PRE–BASIN 
AND RANGE DRAINAGE SYSTEMS

Rocks preserved within a mapped network of Eocene– 
Oligocene paleovalleys (Fig. 2) provide additional insights for 
the region’s topographic evolution that can be interpreted in con-
cert with the sedimentary record. The paleovalleys are defined 
and mapped by their thicker sequences of volcanic fill and can 
be traced generally east-west from range to range across Nevada 
(Henry, 2008). The rocks filling the paleovalleys are precisely 
dated and consist of well-correlated middle Cenozoic ignimbrites 
that flowed hundreds of kilometers east and west along these 
channels from their source calderas (e.g., Henry and John, 2013). 
The flow directions defined by these relations outline a north-
south–trending paleodivide through central Nevada (Henry, 
2008; Best et al., 2013), which has been widely displayed in sub-
sequent publications portraying the paleotopography of the west. 
The paleodivide is viewed as a static feature at least through the 
early Cenozoic, if not as far back as the Cretaceous (e.g., Henry 
et al., 2012).

Figure 2 shows the Cenozoic temporal evolution of volca-
nism together with the ages of the oldest material dated within 
each paleodrainage (compiled from MacGinitie, 1941; Yeend, 
1974; Goldstrand, 1992, 1994; Garside et al., 2005; Henry, 2008; 
Henry et al., 2012; Henry and John, 2013; Dumitru et al., 2015, 
2016). The age of the oldest dated material in each paleovalley 
decreases systematically southward, broadly accompanied by 
the southward progression of volcanism. We consider it unusual 
that no basal paleovalley deposits have known ages significantly 
older than nearby magmatism. This is especially remarkable con-
sidering that the ignimbrites were capable of traveling hundreds 
of kilometers north and south of their eruptive centers (Henry and 
John, 2013). For each stage of migrating volcanism, the earliest 
deposits are preserved near the source calderas, filling paleoval-
leys to the west, east, and sometimes north. Yet—critically—the 
record of fill preserved at the bottoms of paleovalleys (Fig. 2) 
shows few to no examples of eruptive products that would have 
had to travel significantly south (e.g., ≥100 km).

The likeliest explanation is that most or all of these drain-
ages did not exist more than a few million years before magma-
tism began at a given latitude and paleovalleys were filled with 
volcanic material. We propose that the paleovalleys could have 
developed diachronously in response to dynamic topographic 
uplift that likely occurred during south-migrating ignimbrite 
flare up volcanism, when large amounts of magmatic material and 
thermal energy were added to the crust. In this context, fluvial 
paleovalleys with valley-margin relief approaching 1.2 km (e.g., 
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Henry et al., 2012) were incised into the rising hinterland, similar 
to the paleovalleys that formed during the Paleocene–Eocene to 
the north of the study area (e.g., Schwartz and Schwartz, 2013; 
Schwartz et al., 2019). Migrating eruptions would have progres-
sively filled any newly developed valleys with resistant volcanic 
rocks that eventually (because they blanketed the landscape) con-
structed an elevated, relatively flat plateau such as that described 
by Best et al. (2009), with surface elevations substantially 
increased by magmatic and thermal input into the crust.

Figure 7 presents a schematic diagram of the proposed pale-
otopographic evolution ca. 36 Ma, immediately following the 
end of volcanism in the Elko area. As magmatism swept south 
across the Sevier hinterland in Eocene and Oligocene time, it 
prompted the growth of topography due to the voluminous addi-
tion of magma to the crust together with accompanying thermal 
uplift. We suggest that highlands developed near the main erup-
tive centers at any given time and that the approximately north-
south–trending paleodivide proposed by Henry (2008), Henry et 
al. (2012), and Best et al. (2013) was a southward-propagating 
dynamic feature, with the highest topography located above the 
region of the most active caldera centers. Prior to volcanism, 

drainages likely flowed east and west away from the axis of the 
Cretaceous arc (Figs. 2 and 6), as defined by the locus of intru-
sion of the youngest plutonic complexes (Van Buer et al., 2009; 
Van Buer and Miller, 2010; Sharman et al., 2015). This inference 
is based on the significantly higher calculated magnitudes of ero-
sion (~5–7 km) in the arc compared to values of 1–3 km across the 
back-arc region west of the Sevier fold-and-thrust belt (Van Buer 
et al., 2009). The detrital zircon signatures of Late Cretaceous–
Eocene sediments deposited in the California forearc basin, west 
of the arc axis, also indicate derivation from the Sierra Nevada 
magmatic arc (Figs. 1 and 2) and do not indicate detectable sedi-
ment derivation from farther east (Sharman et al., 2015). Some 
drainages may also have flowed southward toward the Mojave 
region (Fig. 1), much of which was a marine environment during 
Paleocene time (e.g., Lofgren et al., 2008; Lechler and Niemi, 
2011). Evolving southward-moving uplift would have tended to 
reorganize preexisting topography and drainages that were hold-
overs from the Late Cretaceous, resulting in paleodrainages that 
emanated to the west, east, and south from the new paleodivide 
in Nevada (e.g., Best et al., 2013; Henry and John, 2013; Lechler 
and Niemi, 2011; Miller et al., this volume). Notably, exposures 
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Figure 7. Schematic illustration of southward-migrating topographic uplift in the Great Basin related to the ignimbrite flare - 
up. This figure depicts a late Eocene (ca. 36 Ma) snapshot of thermally and magmatically supported volcanic highlands 
(to the north). At the latitude of the highlands, the drainage divide has shifted east from its Late Cretaceous to Paleocene 
position along the axis of the ancestral Sierra Nevada range (Van Buer et al., 2009) toward the center of the highlands. 
Latitudes farther south have not yet experienced surface uplift, and the divide remains along the ancestral Sierra Nevada 
range. Drainage networks have been reorganized near and north of the uplifted region, which remains elevated after ces-
sation of volcanism due to input of substantial heat (as indicated by ongoing partial melting in the Ruby Mountains–East 
Humboldt Range metamorphic core complex; Fig. 6) and voluminous volcanic and plutonic material to the crust. 
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of the Eocene Titus Canyon Formation in the Funeral Range, 
southeast California (Fig. 1), herald the onset of volcanism in 
north-central Nevada and include clast compositions and detri-
tal zircon age components that suggest that sediment traveled 
through this region in south-flowing river systems from higher 
elevations located at least 300 km to the north-northeast (Miller 
et al., 2019; Miller et al., this volume). At the same time, paleo-
drainages were less likely to flow northward from active calderas 
due to the presence of predecessor high topography (Fig. 7).

Removal of the Farallon slab during middle Cenozoic time 
is thought to have caused the asthenospheric upwelling and 
subsequent ignimbrite flareup magmatism that would have also 
thinned the lithosphere below the Great Basin (Humphreys, 
1995). Thermally driven uplift is an established consequence 
of both lithospheric thinning and addition of magmatic material 
(e.g., Lachenbruch and Morgan, 1990). The precise magnitude of 
elevation increase due to ignimbrite flareup volcanism is uncer-
tain, but analogy with other regions suggests that it was 1 km or 
more (see Crough, 1978; Pierce et al., 1992; Larimer et al., 2019; 
Schwartz et al., 2019). Along and adjacent to the Yellowstone 
hotspot track (approximately the Snake River Plain on Fig. 1), 
localized volcanism between middle Miocene time and the pres-
ent was accompanied by an east-migrating zone of pronounced 
uplift, faulting, reorganization of drainage systems, and shifts 
of the continental divide (Anders and Sleep, 1992; Pierce et al., 
1992; Beranek et al., 2006; Coble and Mahood, 2016; Camilleri 
et al., 2017; Larimer et al., 2019). Detrital zircon records indicate 
that northeastward migration of Yellowstone hotspot magmatism 
profoundly disrupted drainage networks, causing streams to ema-
nate away from the associated topographic bulge as it progressed, 
producing a northeast-oriented paleodivide that was centered 
either on or at the southern margin of the hotspot track, which 
later evolved into a crescent-shaped divide around the northwest, 
east, and southeast sides of Yellowstone (Beranek et al., 2006; 
Camilleri et al., 2017). The uplift near Yellowstone has led to  
1 km deep river incision since 3.6 Ma, an incision rate of nearly 
300 m/m.y. (Pierce and Morgan, 2009). If the middle Cenozoic 
Great Basin paleovalleys shown in Figure 2 developed as a result 
of the magmatism as we propose, then the up to 1.2 km of mapped 
paleovalley relief (Henry, 2008; Henry et al., 2012) provides a 
minimum estimate for the amount of synvolcanic uplift, compa-
rable to recent incision near Yellowstone. The lack of evidence 
for paleorivers that incised into this elevated volcanic tableland 
following the decline of volcanism (Figs. 6 and 7) might have 
been a consequence of postvolcanic areas being slightly lower 
than areas to the south that were still experiencing active volca-
nism, and/or this might have been due to the erosional resistiv-
ity of the volcanic rocks. The uplift rates along the Yellowstone 
hotspot track not only demonstrate the significance of thermally 
driven topographic changes but also underscore that hundreds of 
meters of paleovalley erosion/incision may occur relatively rap-
idly, such as on the order of 1–10 m.y., rather than over long 
periods of geologic time, such as from the Late Cretaceous to 
middle Eocene (see, e.g., Colgan and Henry, 2017). We propose 

that the same processes that are active today near Yellowstone 
were active in the Great Basin, but at a grander scale, during the 
much more voluminous middle Cenozoic ignimbrite flareup.

PALEOGEOGRAPHIC EVOLUTION OF NORTHEAST 
NEVADA AND THE GREAT BASIN

Based on the evidence presented above from the sedimen-
tary, structural, and magmatic records of the Elko area, integrated 
with data from surrounding areas, we present a summary view of 
the evolution of the Late Cretaceous to Cenozoic paleogeography 
of the northern Great Basin, as illustrated in Figure 8. The time 
line applies to northeast Nevada (right-hand panels of Fig. 6), but 
we suggest that it is also applicable to much of the Great Basin, 
especially pertaining to regional tectonic events (left-hand pan-
els of Fig. 6). This paleogeographic and tectonic history is based 
upon the well-preserved and less controversial surface geologic 
record, but it is also intended to reconcile some of the contradic-
tory models for the tectonic evolution of the region.

Late Cretaceous to Middle Eocene (until ca. 46 Ma): 
Gradual Erosion

Surface-breaking thrust faults were active along the Sevier 
belt (Fig. 1) in the Late Cretaceous (Fig. 8A), and they created 
topography as the thrust belt finalized its development and shed 
its erosional debris into the foreland basin (e.g., Malone et al., 
this volume). In addition to voluminous foreland basin depos-
its, erosion of the Sevier belt is reflected by the basal Cenozoic 
unconformity map, which shows erosion carved much deeper 
into the miogeoclinal section within the thrust belt (e.g., Arm-
strong, 1968, 1972; Van Buer et al., 2009; Konstantinou et al., 
2012). The Sevier thrust faults ceased most of their motion 
by Paleocene time (Fig. 6) as deformation moved east to the 
Rocky Mountains during the middle Late Cretaceous to Eocene 
Laramide orogeny (e.g., DeCelles and Coogan, 2006; Copeland 
et al., 2017), but motion along the Paris thrust of the Sevier belt in 
southeast Idaho and northeast Utah may have continued into the 
Oligocene (Malone et al., this volume). The switch to Laramide-
style deformation is thought to have been linked to the onset of 
shallow slab subduction of part of the Farallon plate (Fig. 8A), 
as documented by both the cessation of magmatism in the Sierra 
Nevada arc and the eastward shift of deformation (e.g., Dickin-
son and Snyder, 1978).

Throughout the Late Cretaceous and early Cenozoic (Fig. 
6), northeast Nevada and much of the Great Basin region to 
the west of the Sevier thrust belt (its hinterland) appear to have 
experienced only modest erosion (<3 km in most areas), with 
evidence for faulting and tectonism in the surficial record only 
located around a handful of previously identified structures (e.g., 
Van Buer et al., 2009; Konstantinou et al., 2012; Long, 2012). 
These inferences are further supported by reconstructions of 
the middle Cenozoic unconformity and paleogeologic maps of 
units beneath that unconformity. The observation of generally 
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low conodont alteration index values across much of the Great 
Basin (Harris et al., 1980; Gans and Miller, 1983; Gans et al., 
1990; Crafford and Harris, 2005) likewise indicates burial only to 
stratigraphic depths and is consistent with erosion mostly limited 
to the upper part of the Paleozoic–Mesozoic shelf stratigraphic 
section. During the Late Cretaceous and early Cenozoic, mul-
tiple lines of evidence discussed above suggest that the regional 
topographic divide was located near the axis of the Cretaceous 
magmatic arc (Figs. 2, 6, and 8A; Van Buer et al., 2009; Sharman 
et al., 2015). To the east of the Sevier fold-and-thrust belt, parts of 
the foreland basin system in Utah were near sea level (Fig. 8A) in 
the Late Cretaceous (DeCelles and Coogan, 2006). The southern 
margin of the Great Basin also lay near sea level in Paleocene 
and possibly early Eocene time (Figs. 1 and 6), as indicated by 
Paleogene marine fossils near the southeastern part of the Sierra 
Nevada, on the northern margin of the Mojave Desert (Lofgren 
et al., 2008; Lechler and Niemi, 2011). Consequently, elevations 
most likely decreased both to the east (Fig. 8A) and south from 
the Cretaceous Sierra Nevada arc and the Sevier hinterland.

Middle Eocene (ca. 46–38 Ma): Shallow Basins and Early 
Volcanism in Northeast Nevada

The Elko and Copper Basins developed during middle 
Eocene time as shallow basins in northeast Nevada (Figs. 1 and 2), 
initiating by ca. 46 Ma and perhaps locally as early as ca. 49 Ma  
(Haynes, 2003; Lund Snee et al., 2016; Smith et al., 2017). At 
about this time, the Farallon shallow slab is inferred to have 
started to steepen (Fig. 8B), triggering upwelling of hot asthe-
nosphere that contributed to an influx of magma and heat to 
the crust (e.g., Armstrong and Ward, 1991; Humphreys, 1995; 
Konstantinou et al., 2012; Konstantinou and Miller, 2015). The 
Elko and Copper Basins (Fig. 1) provide the first indications of 
an eastward shift of the topographic divide (Fig. 8B) in middle 
Eocene time. Deposits preserved in paleovalleys indicate both 
eastward and westward flow of ignimbrites away from an area 
west and north of the Elko Basin (Fig. 2) in northern Nevada 
(Henry, 2008). As suggested above, the mapped paleodrainages 
developed approximately during magmatism (Fig. 6), changing 
an earlier landscape through topographic growth and reorganiza-
tion and replacement of preexisting drainage networks (Fig. 7).

Basin development may have been a result of normal fault-
ing (Vandervoort and Schmitt, 1990; Rahl et al., 2002; Haynes, 
2003; Howard, 2003) and/or isostatic adjustments associated 
with steepening of the Farallon slab and asthenospheric upwell-
ing (Smith et al., 2017) and/or the onset of magma chamber for-
mation and volcanism. Faulting before and during ignimbrite 
flare up volcanism “was minor and/or exceedingly local” through-
out the Great Basin (e.g., Henry and John, 2013, p. 954), but such 
faulting shortly before—and in rare cases during—volcanism 
is observed in several areas, including northeast Nevada (e.g., 
Henry et al., 2011) and central Nevada (e.g., Gans et al., 1989; 
Best and Christiansen, 1991; Miller et al., 1999; Druschke et al., 
2009a; Ruksznis, 2015). Localized faulting may have occurred 
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due to rapid but differential emplacement of voluminous magma 
bodies and heat transfer to the upper crust and/or localized ther-
mal weakening of crust experiencing far-field extensional strain, 
as has been suggested for the vicinity of all three Great Basin 
metamorphic core complexes (Miller et al., 1999; Konstantinou 
et al., 2012, 2013a; Konstantinou and Miller, 2015; Lund Snee et 
al., 2016; Lee et al., 2017). Arrival of volcanism was accompa-
nied by a marked increase of heat input to the crust, as indicated 
by increased high-temperature mineral (zircon and monazite) 
growth ca. 42 Ma at deeper levels of the crust now exposed in 
the Ruby Mountains–East Humboldt Range metamorphic core 
complex (Fig. 6; Howard et al., 2011).

Late Eocene (ca. 38–36 Ma): Active Magmatism  
with Volcanism

Sedimentation effectively ceased with the inception of 
volcanism (see above and Fig. 6), which blanketed the focus 
area with volcanic flows and ignimbrites beginning ca. 38 Ma 
(Haynes, 2003; Ressel and Henry, 2006; Lund Snee et al., 2016). 
These volcanic rocks formed a flat regional tableland (Best et al., 
2009) that persisted in northeast Nevada with little erosion until 
the onset of Neogene Basin and Range faulting. Similar relation-
ships are likely across the entire northern Great Basin (Fig. 6), 
as documented by the widespread preservation of volcanic rocks 
above the regional lower Cenozoic unconformity (e.g., Gans and 
Miller, 1983; Van Buer et al., 2009; Konstantinou et al., 2012). 
Following the last eruption within the study area ca. 36.8 Ma 
(Lund Snee et al., 2016), magmatism continued southward (e.g., 
Ryskamp et al., 2008), likely in tandem with elevation gain, as 
proposed in this paper (Fig. 7).

Late Eocene to Latest Oligocene (ca. 36–25 Ma):  
Volcanic Quiescence with Little Erosion or Faulting at 
Earth’s Surface (but Continuing Magmatism and  
Crustal Melting at Depth)

Partial melting and magmatism continued in the deeper crust 
within the developing Ruby Mountains–East Humboldt Range 
metamorphic core complex and the Albion–Raft River–Grouse 
Creek metamorphic core complex to the north (Figs. 1, 2, and 
6), long after the cessation of surface volcanism, and concomi-
tant with relative rise of metamorphic rocks (McGrew and Snee, 
1994; McGrew et al., 2000; Howard et al., 2011; Konstantinou et 
al., 2013a). The persistence of elevated temperatures, combined 
with ongoing and prior magmatic addition to the crust from 
the mantle, likely ensured that topography remained thermally 
elevated to some degree (Fig. 7), at least through much of the 
Oligocene. The near absence of sedimentary deposits between 
ca. 38 and 25 Ma in the study area (Fig. 6), and following vol-
canism throughout the northern Great Basin in general (Henry et 
al., 2011), confirms that whatever surface-breaking faulting that 
occurred during the 10 m.y. or more time span following volca-
nism was very limited in extent and magnitude.

Latest Oligocene to Middle Miocene (ca. 25–16.5 Ma): 
Little Erosion and Limited Faulting

The sedimentary record in northeast Nevada indicates that 
tectonic quiescence and gradual erosion occurred between lat-
est Oligocene and middle Miocene time (Fig. 6). Locally, how-
ever, lacustrine sedimentation (indicating the formation of basin 
accommodation) may have initiated during this time (Figs. 4B, 
5, and 6), based on the ages of the earliest fluvial-lacustrine sedi-
ments deposited above Eocene and Oligocene volcanic rocks in 
Huntington Valley (Figs. 4B and 5) and near the East Humboldt 
Range (Fig. 1; Frerichs and Pekarek, 1994; McGrew and Snoke, 
2015; Lund Snee et al., 2016). Minor deposition in the latest Oli-
gocene or early Miocene has also been recorded near the Snake 
Range metamorphic core complex (Gans et al., 1989; Miller et 
al., 1999; Ruksznis, 2015) and elsewhere (Fig. 6).

Middle Miocene (17–16 Ma) to Present: Rapid and  
Then More Gradual Extension

As discussed above, rapid slip on Basin and Range normal 
faults, with formation of ensuing topography similar to that of 
today, occurred across most of the central part of the northern 
Basin and Range Province (Figs. 1, 2, 6, and 8C) ca. 17–16 Ma 
(e.g., Noble, 1972; Lund et al., 1993; Miller et al., 1999; Stockli, 
2005; Colgan et al., 2010). Across this region, fault slip rates 
decreased beginning ca. 12–10 Ma (Fig. 6), based on thermochro-
nologic data and sedimentation rates (e.g., Colgan et al., 2008; 
Colgan and Henry, 2009). Extension that began in these central 
areas subsequently propagated west, east, and north (Surpless et 
al., 2002; Stockli, 2005; Colgan et al., 2006; Lerch et al., 2008). 
Extension continues at a slow rate today as active slip takes place 
primarily on faults now close to the boundaries of the province 
(Thatcher et al., 1999; Kreemer et al., 2010). The timing of rapid 
extension coincided closely with a number of notable tectonic 
events (Figs. 6 and 8C), including final removal of the Farallon 
slab ca. 20 Ma (Humphreys, 1995), development of a gap in the 
Farallon slab ca. 17 Ma and subsequent impingement of the Yel-
lowstone hotspot (Liu and Stegman, 2012), and the progressive 
development of the San Andreas transform boundary with north-
ward migration of the Mendocino triple junction over Neogene 
time (Atwater and Stock, 1998).

IMPLICATIONS FOR PALEOTOPOGRAPHY AND 
CRUSTAL THICKNESS

The paleogeographic and crustal history outlined in this 
synthesis (Figs. 6, 7, and 8) has direct implications for the topo-
graphic and crustal evolution of the hinterland region between 
the Cretaceous arc and Sevier thrust belt (Figs. 1 and 2). Multiple 
lines of evidence suggest that appreciable elevation gain (prob-
ably 1 km or more, as suggested above) may have taken place 
much later than Mesozoic time (Fig. 8A), roughly synchronous 
with and persisting to some degree after Cenozoic volcanism 
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swept across the region (Figs. 2 and 8B), before subsiding to the 
present ~1.5–2.0 km average elevations and sawtooth topography 
during and/or after Basin and Range extension (Fig. 8C). The 
growing database discussed here indicates an important time lag 
between crustal thickening and extension that is inconsistent with 
suggestions that a high plateau was supported by gravitationally 
unstable crust overthickened during the Mesozoic (e.g., Sonder 
et al., 1987; Chase et al., 1998; Druschke et al., 2009b; Wells 
et al., 2012; Wells and Hoisch, 2012; Craddock Affinati et al., 
this volume). In addition, an important consideration is that the 
heat budget represented by ultimately mantle-derived Cenozoic 
magmatism by far exceeded that related to thermal equilibration 
of crust thickened by thrust faulting (Gottlieb, 2018; Gottlieb et 
al., this volume).

The thermal effects from voluminous and widespread ignim-
brite flareup magmatism are rarely considered in topographic 
and tectonic models of the Great Basin. Studies that estimate 
preextensional crustal thicknesses by restoring Cenozoic exten-
sion (e.g., Bahadori et al., 2018; Long, 2018) do not account for 
the substantial thicknesses of middle Cenozoic volcanic mate-
rial added to the surface in many areas nor the potentially much 
greater volumes of associated plutonic material; thus, their 
inferred postthickening and preextensional crustal thicknesses 
are likely overestimates. A (map view) restoration of topogra-
phy across the northern Great Basin by Bahadori et al. (2018) 
proposed a narrow, tall (crest ≥4 km and peaks >6 km) moun-
tain range atop an ~55–60-km-thick welt of crust in the Eocene. 
That study restored preextensional crustal thicknesses based on 
the kinematic model by McQuarrie and Wernicke (2005), com-
bined with an isostatic compensation model. The geometry of 
the resulting crustal welt is broadly similar to that shown by 
Long (2018), which was based largely on the Sevier thrust belt 
reconstruction of DeCelles and Coogan (2006). The mountain 
chain modeled by Bahadori et al. (2018) lies ~200 km east of 
the middle Cenozoic paleodivide that was inferred by Henry et 
al. (2012) and Best et al. (2013) using the paleoflow directions of 
channelized ignimbrites. The suggestion of a rugged, ≥4-km-tall 
mountain chain along the Utah-Nevada border, supported by rel-
atively thick crust, is at odds with evidence that prevolcanic ero-
sion magnitudes were modest and smoothly distributed through-
out the area of the inferred crustal welt (Gans and Miller, 1983; 
Miller and Gans, 1989; Konstantinou et al., 2012; Long, 2012). It 
would also be unusual for such steep topography to develop just 
to the west of the active fold-and-thrust belt. This disagreement 
between these estimates of crustal thickness and topography and 
the geologic data described in this paper suggests the need for (1) 
retrodeformation studies that consider the limited crustal thick-
nesses that lay beneath the passive-margin sequence west of its 
depositional hinge line; (2) tighter constraints on the magnitude 
of westward crustal underthrusting (see Craddock et al., this vol-
ume; Gottlieb et al., this volume); (3) incorporation of updated 
models of Cenozoic extension and possible magmatic additions 
to the crust during the ignimbrite flareup; and (4) consideration of 
the thermal state of the crust and the likelihood of regional-scale 

lower-crustal flow that might have flattened the Moho before and 
during extension (Gans, 1987).

The assortment of geologic data presented here is incom-
patible with suggestions that crustal thicknesses became so 
great during Mesozoic shortening that they led to gravitationally 
driven extensional collapse (e.g., Wells et al., 2012). There is also 
little evidence in the record of sedimentation, stable isotope val-
ues, and deformation, such as surface faulting, to suggest sig-
nificant changes in elevation between the Late Cretaceous and 
the time shortly before the arrival of middle Cenozoic volcanism. 
What little deposition occurred was mostly within the Sheep Pass 
Basin, where up to ~1 km of Sheep Pass Formation sediments 
was deposited throughout Late Cretaceous to middle Eocene time 
(Figs. 1, 2, and 6; Druschke et al., 2009a, 2009b). We point out 
that the gradual, localized occurrence of normal faulting thought 
to have provided accommodation for these deposits does not nec-
essarily signify wholesale gravitational collapse of overthickened 
crust across the immense region envisaged as encompassing the 
Nevadaplano. Moreover, topographic relief (which would result 
from widespread surface-breaking faulting) likely was low across 
most of the Sevier hinterland before middle Cenozoic time (Fig. 
8A), based on the depositional patterns of far-traveled Cenozoic 
ash-flow tuffs (e.g., Best et al., 2009) and the modest magnitudes 
of pre-Eocene erosion and tilting documented in the Elko region 
(Brooks et al., 1995; Henry et al., 2011; Lund Snee et al., 2016; 
Canada et al., 2020; this study) and across the hinterland in gen-
eral (Gans and Miller, 1983; Gans et al., 1990; Crafford and Har-
ris, 2005; Van Buer et al., 2009; Long, 2012; Konstantinou et al., 
2013b). Suggestions that the hinterland was early on character-
ized by rugged, mountainous topography (Druschke et al., 2011; 
Bahadori et al., 2018; Bahadori and Holt, 2019) are clearly at 
odds with the above set of observations.

Few constraints are available for absolute elevations of the 
Sevier hinterland prior to extension, during the Late Cretaceous 
and early Cenozoic. Measurements from Eocene fossil leaves in 
Copper Basin (Figs. 1 and 2), representing the time at the onset of 
volcanism, provide widely distributed elevation estimates ranging 
from 0.6 to 1.2 km (Christiansen and Yeats, 1992) and 1.6 ± 1.6 km 
(Chase et al., 1998) to 2.0 ± 0.2 km (Wolfe et al., 1998) and 2.8 ± 
1.8 km (Chase et al., 1998). This broad range complicates efforts 
to employ such estimates quantitatively. A definitive minimum 
hinterland elevation bound of 1.2 km was provided by Henry et al. 
(2012), based on measured middle Cenozoic paleovalley depths, 
which we suggest developed only after uplift related to ignim-
brite flareup volcanism. Probably the most reliable estimates of 
absolute elevation are provided by two clumped isotope studies. 
Snell et al. (2014) estimated that absolute elevations in the Sheep 
Pass Basin (Fig. 1) of east-central Nevada ranged between 2.0 and 
3.1 km in latest Cretaceous to early Paleocene time. Also using 
clumped isotope thermometry, Lechler et al. (2013) estimated 
only ≤2 km paleoelevation for the Sheep Pass Basin, integrated 
over the younger but overlapping latest Cretaceous–early Eocene 
interval. Although different, these two elevation estimates overlap 
at ~2 km, suggesting that this may be a reasonable elevation value 
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for east-central Nevada in latest Cretaceous–early Eocene time. 
Additional lines of evidence support suggestions of only mod-
est elevations across the Sevier hinterland prior to volcanism. As 
noted, marine fossils, stable isotope data, and detrital populations 
show that the southern Sierra Nevada and areas slightly to the east 
(~35.5°N latitude), which have a similar geologic history to the 
Great Basin, were at or near sea level in the Paleocene (Figs. 1 
and 6) and may have remained very low (<1 km) into Eocene time 
(Lofgren et al., 2008; Lechler and Niemi, 2011). If a significantly 
elevated plateau was present across the Great Basin in Late Creta-
ceous and Paleogene time, then it must have been limited to areas 
north of ~37°N–38°N and bounded on the south by slopes leading 
nearly to sea level.

It is challenging to reconcile the above narrative of Great 
Basin surface evolution with the implications of 10–20 km of 
relative uplift implied by quantitative geobarometry on Creta-
ceous metamorphic assemblages in metamorphic core complexes 
(Hodges et al., 1992; Lewis et al., 1999; McGrew et al., 2000; 
Cooper et al., 2010; Hallett and Spear, 2013). These analyses 
represent the primary evidence supporting suggestions of large 
crustal thicknesses that drove gravitational collapse of the hin-
terland prior to Miocene time. A more complete discussion of 
these questions is provided by Hoiland et al. (this volume), but 
two hypotheses are relevant: (1) In recent years, it was recognized 
that the assumptions underpinning these geobarometric methods 
may in some cases be invalid, particularly the expectations that 
mineral assemblages were in equilibrium during formation (Spear 
et al., 2014) and that the pressure measurements can be interpreted 
as representing steady-state overburden pressures (proportional to 
burial depth) rather than transient and/or nonisostatic (tectonic) 
stresses (Schmalholz et al., 2014; Gerya, 2015). This leaves open 
a number of other possibilities to explain high pressure estimates 
in Great Basin metamorphic core complexes, including tectonic 
“overpressure” (Henry et al., 2018; Thorman et al., 2020; Zuza 
et al., 2020; Hoiland et al., this volume). (2) If some or all of the 
proposed uplift in developing metamorphic core complexes was 
Cenozoic in age, then uplift could have occurred with little surface-
breaking extension provided that lower-crustal rocks were locally 
decoupled from surface deformation due to strongly elevated heat 
flow during midcrustal melting (MacCready et al., 1997; Miller 
et al., 1999; Konstantinou et al., 2012; Lund Snee et al., 2016; 
Lee et al., 2017). This mechanism would explain the difference in 
timing of subsurface uplift versus surface-breaking extension, as 
elegantly demonstrated for the Albion–Raft River–Grouse Creek 
(Fig. 1) metamorphic core complex (Konstantinou et al., 2013a).

CONCLUSIONS

We have presented an updated view of the enigmatic tran-
sition from Mesozoic shortening to Cenozoic extension in the 
Great Basin (Figs. 1 and 2), focusing primarily on the supra-
crustal records of sedimentation, erosion, faulting, volcanism, 
and stable isotope values, and the ways in which they relate to 
topography development. This integrated record shows that 

gradual erosion, limited deposition, and general tectonic quies-
cence prevailed between Late Cretaceous and middle Cenozoic 
time (Fig. 6). Although surface-breaking faults are documented 
across this time interval, they were local in scale and significance, 
involving relatively low magnitudes of slip (e.g., Best and Chris-
tiansen, 1991; Henry et al., 2011). The arrival of south-migrating 
ignimbrite flareup volcanism in the middle Cenozoic profoundly 
affected topography, disrupting hinterland drainage networks. 
This is most clearly shown by the systematic southward-young-
ing ages of the oldest material recorded at the bases of west- and 
east-flowing Eocene–Oligocene paleovalleys (Fig. 2), suggest-
ing that new drainages formed progressively southward, roughly 
synchronous with volcanism. In some areas, volcanism was also 
preceded by development of shallow basins, relatively minor off-
set along normal faults, and limited sedimentation. We suggest 
that volcanism caused pronounced uplift, perhaps of the order 
of 1.2 km based on the measured height of paleovalleys active 
during this time (Henry et al., 2012). Given the massive influx 
(see, e.g., Best et al., 2009) of heat associated with the addition 
of volcanic and plutonic material to the lithosphere, uplift is an 
expected result (e.g., Lachenbruch and Morgan, 1990), as exem-
plified today by the >1 km uplift around Yellowstone (e.g., Pierce 
et al., 1992). However, while the records of sedimentation, ero-
sion, faulting, drainage development, and magmatism all sup-
port an elevation increase associated with the ignimbrite flareup, 
this is no longer clearly supported by the available stable isotope 
information from carbonates in basins across the western United 
States. A consequence of the improved age control and character-
ization of those sections near Elko (Lund Snee et al., 2016; Smith 
et al., 2017; this study) and in southwest Montana (Schwartz et 
al., 2019) is that prominent decreases in δ18O values during the 
early and middle Cenozoic (e.g., Horton et al., 2004; Davis et al., 
2009b; Kent-Corson et al., 2006; Mix et al., 2011; Chamberlain 
et al., 2012) can no longer be tied directly to the onset of volca-
nism in these areas.

We propose that dynamic uplift accompanying ignimbrite 
flareup magmatism shifted the continental divide eastward into 
central Nevada from its prior position along the crest of the Cre-
taceous magmatic arc (Van Buer et al., 2009) and that this shift 
occurred in a southward-propagating fashion (Figs. 7 and 8). The 
middle Cenozoic highlands that supported this developing paleo-
divide were not static but instead responded dynamically as erup-
tions occurred and calderas formed. Volcanism left behind a pla-
teau, with little documented erosion, tectonism, or sedimentation 
occurring until ca. 17 Ma (Figs. 6–8), although minor deposition 
initiated as early as latest Oligocene time in certain areas (Fig. 6), 
dominantly near developing metamorphic core complexes (Gans 
et al., 1989; Frerichs and Pekarek, 1994; Miller et al., 1999; 
McGrew and Snoke, 2015; Ruksznis, 2015; Lund Snee et al., 
2016;  this study). Elevations likely remained high following vol-
canism (perhaps with some component of gradual subsidence) 
due to the largely irreversible addition of magma to the crust and 
because rocks currently exposed in metamorphic core complexes 
experienced partial melting tens of millions of years later than 
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the onset of Cenozoic magmatism (Howard et al., 2011; Strick-
land et al., 2011; Konstantinou et al., 2012, 2013a; Konstantinou 
and Miller, 2015). Rapid regional extension by Basin and Range 
faulting initiated ca. 17 Ma (Stockli, 2005; Colgan and Henry, 
2009; Colgan, 2013), probably in response to changing bound-
ary conditions, and driven by crust that remained elevated and 
thermally weakened.

The tectonic and topographic history and its temporal frame-
work discussed here challenge suggestions that Mesozoic short-
ening produced a greatly thickened and elevated crust that drove 
gravitational collapse across the Sevier hinterland, either during 
shortening or soon after (see also Konstantinou, this volume). 
Evidence for rapidly evolving topography, drainage divides, and 
highlands related to and during Cenozoic magmatism also chal-
lenges the traditional notion of a long-lived, strongly elevated 
Nevadaplano (Cassel et al., 2012; Wells et al., 2012; Best et al., 
2013) with a fixed (Late Cretaceous to) Cenozoic drainage divide 
(Henry et al., 2012). These suggestions pose implications for our 
understanding of orogenic and magmatic systems worldwide, 
underscoring the short time scales over which major changes in 
elevation and catchments can occur, particularly when the influ-
ence of magmatism on topography is considered.
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